
Introducing Teachers to Computational Thinking Using
Unplugged Storytelling

Paul Curzon
Queen Mary University of

London
London, UK

p.curzon@qmul.ac.uk

Peter W. McOwan
Queen Mary University of

London
London, UK

p.mcowan@qmul.ac.uk

Nicola Plant
Queen Mary University of

London
London, UK

n.j.plant@qmul.ac.uk
Laura R. Meagher

Technology Development
Group

Fife, Scotland, UK
Laura.Meagher@btinternet.com

ABSTRACT
Many countries are introducing new school computing syl-
labuses that make programming and computational think-
ing core components. However, many of the teachers in-
volved have major knowledge, skill and pedagogy gaps. We
have explored the effectiveness of using ‘unplugged’ meth-
ods (constructivist, often kinaesthetic, activities away from
computers) with contextually rich storytelling to introduce
teachers to these topics in a non-threatening way. We de-
scribe the approach we have used in workshops for teachers
and its survey based evaluation. Teachers were highly pos-
itive that the approach was inspiring, confidence building
and gave them a greater understanding of the concepts in-
volved, as well as giving practical teaching techniques that
they would use.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

Keywords
Computational thinking, K-12 education, unplugged

1. INTRODUCTION
The UK has recently overhauled the way computing sub-

jects are taught in schools, with similar initiatives being
introduced in many countries. The previous ICT curricu-
lum, focussing on the use of current technology, has been
replaced by a Computing curriculum based on the devel-
opment of computer science concepts and skills. This cur-
riculum, which starts in primary school, has computational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
WiPSCE ’14, November 05 - 07 2014, Berlin, Germany
Copyright 2014 ACM 978-1-4503-3250-7/14/11 ...$15.00
http://dx.doi.org/10.1145/2670757.2670767.

thinking at its heart. Seymour Papert introduced the term
‘computational thinking’ in the context of suggesting an al-
ternative, computationally-based mathematics education [9].
Jeanette Wing [10] then turned it into a mainstream idea in
computing education: that it was the skill set that learning
computer science delivers. How best to teach it, however
remains an open question.

A big issue facing these initiatives is that not all the
teachers involved have computing backgrounds. This means
there is a knowledge and skill gap, especially with respect to
subject-based pedagogy. As computational thinking is cen-
tral to the syllabus, it is important that teachers both have
a deep understanding of it and have ways to help students
develop the skills. We describe the implementation and eval-
uation of an initiative to begin to address this problem.

To support teachers in understanding how computational
thinking skills fit the new syllabus, the UK Computing at
School working group created a framework for introducing
computational thinking into classroom activities [4]. This
builds on ‘Computing Progression Pathways’ [8]: an assess-
ment framework which links UK computing syllabus topics
to computational thinking skills. Both are based on break-
ing the computational thinking skills into a simplified set
of core areas that can easily be integrated into a practi-
cal assessment framework for teachers to apply: algorithmic
thinking, evaluation, decomposition, abstraction and gener-
alisation. These are then broken into ‘classroom techniques’
that encompass the wide range of topics suggested as part
of the computational thinking skill set.

We developed 5 workshops for teachers on computational
thinking themes based on existing, unplugged style comput-
ing activities. Unplugged Computing [1] is the approach
to teaching computing concepts using constructivist, often
kinaesthetic, activities away from computers. It has suc-
cessfully been used for teaching computing at all age groups
from primary school to university level (see e.g., [6][5]). We
used a mixture of activities created and made publicly avail-
able by our previous projects [3]. Other activities were being
used as part of an introductory undergraduate programming
module. The computational thinking themes were explicitly
drawn out in our workshops during the activities and rein-
forced at the end of each. We have suggested [3] that it is
important to teach computational thinking in a way that

WiPSCE 2014 Research Papers

89

http://dx.doi.org/10.1145/2670757.2670767

demonstrates how the whole coherently fits together, and
that it is understood as a combined skill set from the start.
We build on this idea here using unplugged activities em-
bedded in rich open problem-solving stories to give contex-
tually rich scenarios within which computational thinking is
applied.

There are several potential uses of unplugged workshops:
to teach computing concepts (such as binary numbers) di-
rectly to school students; to introduce the unplugged style
of teaching to teachers; to demonstrate activities for teach-
ers to use in class, and as an explicit teacher training tool
to teach computing concepts to teachers. Our focus here
is most closely aligned to the latter use, as part of teacher
training with the others as secondary benefits.

The contributions of this paper are two fold. We give a co-
herent set of workshops for teaching teachers computational
thinking concepts, and we provide evidence that it works to
fill teachers’ knowledge gaps about computational thinking,
is confidence building, and is seen as a useful practical way
that they can teach computing to school students.

2. THE WORKSHOPS
Our first unplugged workshop focuses on computational

thinking in general, the second on algorithmic thinking, the
third on unplugged programming techniques and the fourth
on the human factors side of computational thinking. All
lasted 90 minutes. The style of delivery is an interactive
lecture, combining volunteers demonstrating activities at the
front with short whole class activities. All aimed to draw
out a variety of computational thinking skills/concepts and
demonstrate that they are not used in isolation. We hoped
both to give a deeper understanding of those concepts and
give ideas for new ways to teach them. After each activity a
summary was given of the computational thinking skills that
had been covered. A fifth 2 hour workshop used a selection of
the same activities and was given to trainee primary school
teachers, rather than current practicing teachers.

The workshops were run independently and different groups
of teachers attended each, though there was some overlap.
Full descriptions of the workshops and activities are avail-
able via Teaching London Computing (teachinglondoncom-
puting.org).

2.1 Workshop 1: Computational Thinking
The first workshop consisted of 4 activities in two groups.

The first two followed the ‘story’ given in [2]. It uses the
context of helping someone with locked-in syndrome (total
paralysis due to a stroke) to communicate. The first ac-
tivity involves the audience pairing up and communicating
by blinking. One person says the letters of the alphabet.
The other blinks when they get to the letter they wish to
communicate. The audience are asked to think of improve-
ments as well as details of this algorithm that need further
thought to make it work. This illustrates algorithmic think-
ing. The audience suggest things like predictive texting and
frequency analysis as improvements, illustrating the concept
of generalisation in the sense of transforming solutions be-
tween domains. The concept of abstraction is illustrated
when discussing the efficiency of the algorithm used, in that
the analysis is done in terms of operations rather than time.
The importance of evaluation is discussed in terms of an
algorithm’s functionality, its performance and its usability.

The second activity involves playing a game of 20 ques-

tions to illustrate how a a divide and conquer approach leads
to much faster algorithms. This illustrates the concept of
decomposition in the divide and conquer solution, generali-
sation in taking a solution from one domain (a child’s game)
and applying it to this new area, and more on evaluation of
performance. As a whole these two activities tell a contex-
tually rich story that draws out how a wide range of com-
putational thinking skills are used in an integrated way to
solve problems – even when the solution does not include
technology.

In the second half we do a card trick: “The Australian
Magician’s Dream”. A volunteer cuts the pack, then after
repeatedly dealing out cards and throwing away one pile
each time we are left with a single card. Despite no one
being able to predict in advance what it will be, the card is
the same as one in a sealed envelope.

It is a self-working trick – an algorithmic trick. Reveal-
ing how it works leads to a discussion of what an algorithm
is, and how just as programmers write instructions that al-
ways give a desired effect whatever happens, so do magi-
cians. The main difference is that one set of instructions is
for a computer to follow and the other for a magician. A
diagrammatic proof of how the trick is done demonstrates
algorithmic thinking, and also abstraction. A final activity,
demonstrates how the same algorithm applied to a binary
encoding on a punch card can be used to search for any card.
This is another example of generalisation as the same algo-
rithm is used in the trick and for searching for data, (though
one is a sequential algorithm and the other a parallel ver-
sion).

2.2 Workshop 2: Algorithmic Thinking
The second workshop covered three activities based on a

game, a magic trick and a puzzle, all linked to algorithmic
thinking. The first, the ‘Intelligent Piece of Paper’ activity,
involves making a claim that a particular piece of paper is
more intelligent than anyone there. After a discussion of
whether paper can be intelligent and what intelligence is, it
is revealed that the paper plays Noughts and Crosses and
has never lost. Two volunteers play a game, one doing what
the paper tells them based on the instructions written on
it and the other similarly following the audience’s instruc-
tions. Often the paper wins by forking its opponent. This
leads to a discussion of what an algorithm is, how the pa-
per contains an algorithm for playing perfect noughts and
crosses, and how the algorithm was created. It introduces
algorithmic thinking, logical thinking in coming up with the
rules, abstraction in the way the rules are written, and the
importance of evaluation in being sure it works.

The second activity uses a magic trick, ‘Invisible Palm-
ing’. It involves invisibly moving a card from one pile to
another. After doing the trick once, the whole audience are
split into pairs and given packs of cards. All do the trick
in parallel. Even though they do not know how they do it,
the trick works! It is a self working trick - an algorithm. It
emphasises the idea that algorithmic solutions allow people
or computers to achieve things without needing any under-
standing as long as they follow the algorithm - they could do
the trick with no idea of how it worked, just as computers
follow algorithms with no idea of what they are doing. This
also illustrates decomposition as well as abstraction when
looking at the separate parts of the algorithm. It also in-
volves evaluation with respect to functionality and in the

WiPSCE 2014 Research Papers

90

sense that it is about solutions working for people. An algo-
rithmic trick will only work if it has a good presentation, just
as programs need good interfaces and interaction design.

The final activity illustrates the idea that there can be
more than one algorithmic solution to a problem and that
different algorithms can be more or less efficient. It uses
solitaire style puzzles, moving pieces on a linear board. The
audience are asked to solve the puzzle not just in the sense
of swapping the pieces’ positions, which can be done eas-
ily by trial and error, but in the sense of having written
an algorithm. They must be able to do the puzzle again
by following their instructions without thinking. They are
encouraged to look for the fastest possible solution. This
demonstrates how evaluation of algorithmic solutions con-
cerns not just functional correctness but also performance.

2.3 Workshop 3: Unplugged Programming
The first activity of workshop 3 involves programming a

robot face that makes different expressions depending on
sounds the audience make. The unplugged twist is that it
is made of audience members holding eyebrows, eyes and a
mouth made of card and tubes. They follow instructions
for their feature of the face. This demonstrates algorithmic
thinking in programming the face, and object-based decom-
position and abstraction in the high level instructions used.

This is followed by activities on understanding variables
and sequences of assignment statements: this is a critical
barrier where novices get stuck. We trace (i.e., follow step-
by-step) a swap program swapping colours between vari-
ables. The activity involves students holding boxes with
name labels to act as variables and coloured paper for the
values. It is used to visualise misconceptions. A key point
is explaining (and acting out) that the boxes are ones with
a shredder and copier included - to deal with copying val-
ues and overwriting old values with new ones. The program
is acted out step-by-step, moving values about, explaining
what is happening and why, as well as encouraging questions
about each step. In the process the teachers in the work-
shop ask lots of questions about their own misconceptions
and potential misconceptions of the students, which can be
dealt with by acting out a corresponding scenario. This leads
on to a pencil and paper dry run test to highlight similar
misconceptions that still persist. It draws on the ideas of
Dehnadi and Bornat of a way to judge programming poten-
tial [7]. We use it instead in a diagnostic way to highlight
mental model misconceptions and fix them. This is both a
powerful way to identify misconceptions of the teachers and
a way to teach them the power of pencil and paper tracing
to teach programming.

Finally we act out control structures by compiling a sim-
ple if-based program onto audience members who each rep-
resent a command or expression and are wired together with
rope to represent control flow. An additional person acts as
the screen. A tube is used as the program counter to keep
track of who should take their action at any point. When
the tube returns to the lecturer the program has executed
and something appeared on the board (the screen) based on
input from the audience (the keyboard).

2.4 Workshop 4: The Human Side
The fourth workshop emphasises the need to understand

people in computational thinking. In a card trick, ‘The 4
Aces’, the audience are told they must keep track of the aces

as hands are dealt. A volunteer, who everyone thought had
four aces, turns out to have none: the magician has them
instead. It shows that algorithmic thinking (in magic and
computing) has to take human limitations in to account, in
this case our limited focus of attention. A magician designs
a system so everyone makes a mistake at the same time,
software engineers must use the same ‘tricks’ to ensure no
one makes mistakes. This is reinforced using change blind-
ness images - where something is changed in an image as it
flashes, and even though the change is large the audience
struggle to see a difference.

This is then put in the context of medical device design
and a nurse overlooking a mistake in entering a drug dose:
here the device design could have drawn their attention to
it or prevented the mistake. These ideas are reinforced by
a second trick that involves a magical jigsaw where a robot
appears and disappears. This emphasises how a system can
be designed to be so complex the human brain cannot take
in important information. These activities emphasise that
the design and evaluation aspects of computational thinking
have to take a human-computer interaction perspective.

Finally we show a video ‘Microwave racing’ – essentially
user testing turned into a game. It illustrates how different
interface designs of microwaves make the supposedly simple
task of microwaving frozen peas easy or hard. It reinforces
how the lessons covered apply to the design of a wide range
of computer-based systems.

3. EVALUATION
To evaluate the usefulness of our approach to support

teachers we conducted a paper-based post-event survey. 126
people filled out forms (58% female, 42% male) 40 attended
workshop 1, 22 workshop 2, 21 workshop 3, 24 workshop
4 and 19 attended the primary computing workshop. A 5-
point Likert scale was used ranging from ‘strongly disagree’
through ‘disagree’, ‘neutral’ and ‘agree’ to ‘strongly agree’.
The responses were extremely positive throughout.

The first 5 questions were common to all workshops. They
asked whether the workshop was: Useful, Interesting, In-
spiring, Confidence Building and Fun. For all questions the
average rating was well over 4 on the 5 point Likert scale.
94% were positive (agreeing or strongly agreeing) about it
being useful, 96% that it was interesting, 92% that it was in-
spiring, 89% that it was confidence building, and 94% that it
was fun. 98% (n=124) were positive that they would recom-
mend the workshop to others. Only 1 person was negative
about any of these questions. Similarly 95% (n=122) agreed
or strongly agreed that they would use ideas from the work-
shop in their teaching (though which activities varied).

For workshops 1, 2 and 5 we asked whether as a result
of the workshop they now had a better understanding of
computational thinking (in general). 89% (n=81) answered
positively with an average rating of 4.35. Only one person
disagreed. We similarly asked if as a result of the work-
shop they had new ideas about how to teach computational
thinking. The results were similar. 90% (n=77) answered
positively with an average rating of 4.31. Only two people
disagreed. For workshop 4 on the human side of compu-
tational thinking we asked the same two questions, except
asking them with respect to “computational thinking: about
people”. These results were even more positive. 96% (n=24)
answered positively (average rating 4.63). No one disagreed.
All (n=24) were positive that the workshop had given them

WiPSCE 2014 Research Papers

91

new ideas about how to teach the topic (average rating 4.75).
After the second workshop on algorithms, we asked about

both improved understanding and whether the workshop
gave good ways to teach: what an algorithm is, what a
program is and testing/efficiency of algorithms. All but 2
respondents were positive. None were negative.

The third workshop addressed the early stages of novices
learning programming, in an unplugged way. The questions
were therefore more focussed on programming topics. We
asked whether, as a result of the workshop, the teachers
better understood: programming, variables and assignment,
if statements and flow of control, and compile versus run
time. Variables / assignments and compile time versus run
time are specific topics we have found novices can struggle
to understand. The results were again highly positive. The
question about better understanding programming was also
asked of those on the primary computing workshop which
included the face activity and box variables. Virtually all
respondents were positive about each aspect.

We also asked whether the teachers felt they did now have
better ways to teach these topics. There were only small
differences with the answers overwhelmingly positive.

The first and fourth workshops, though focussing on com-
putational thinking more generally, also covered some spe-
cific computing topics around search algorithms, HCI and
data structures (so linked to the data representation aspect
of computational thinking). We therefore also specifically
asked about these. Again the answers were very positive,
though two respondents disagreed that their understanding
of topics around search algorithms and divide and conquer
was improved. The fourth workshop with respect to human-
computer interaction was again overwhelmingly positive.

In answer to a question about the best thing about the
session many activities are named. Magic tricks (done in
all but one session) are named most often. The ‘Box Vari-
able’ activity explaining variables and assignment and how
to overcome misconceptions was particularly popular. Sev-
eral commented on the unplugged approach that it made
things “accessible” or “simple to understand” and that the
best thing was“Being able to visually see the task being com-
pleted”. Several suggested that it had given them practical
ideas or emphasised the practical nature of the approach or
the way it put computing into a context.

4. CONCLUSIONS
Unplugged activities are not only a powerful way to intro-

duce children to computing concepts, this work shows that
they are also a powerful way to introduce these concepts to
adult teachers. In particular computational thinking ideas
can be successfully introduced in this way.

Teachers attending the workshops in informal conversa-
tion afterwards with the lecturer and other members of staff
helping with organisation were highly positive. This anecdo-
tal feedback was backed up by the formal survey where the
answers were overwhelmingly positive across all workshops.
Only a handful of respondents were negative about any as-
pect. We have thus provided evidence that this approach
of using unplugged activities embedded in contextually rich
stories is an effective way to explicitly introduce computa-
tional thinking ideas as well as more traditional computing
topics to teachers themselves, not just to children. How-
ever, this was based on their immediate perceptions. Ideally
a follow-up study is needed to find how they fared when

actually using the activities.
The evaluation suggests that unplugged activities make

for an inspiring and fun session for teachers that they also
find useful, interesting and confidence building. Confidence
building is particularly important, given the challenge facing
teachers adapting to a new curriculum that requires them
to learn new skills and body of knowledge. As one partic-
ipant commented on the form about the best thing about
the workshop: “realising the approachableness of computer
science. It is now less daunting to teach.”

5. ACKNOWLEDGMENTS
Teaching London Computing is funded by the Greater

London Assembly (LSEFR1094). cs4fn was funded by the
EPSRC (EP/F032641/1) with support from Google’s CS4HS
programme. This paper was written with support from
CHI+MED (EPSRC EP/G059063/1). The robot face activ-
ity was developed with Quintin Cutts, Steve Measure and
Steve Brindley (University of Glasgow). Microwave Racing
was created by Dom Furniss (UCL) as part of CHI+MED.
Jo Brodie and Chrystie Myketiak also supported this work.

6. REFERENCES
[1] T. Bell. A low-cost high-impact computer science

show for family audiences. In Proceedings of the
Australasian Computer Science Conference (ACSC
2000), pages 10–16, 2000.

[2] P. Curzon. Computational Thinking: Searching to
Speak. Queen Mary, University of London. Available
from www.teachinglondoncomputing.org, 2013.

[3] P. Curzon. cs4fn and computational thinking
unplugged. In M. E. Caspersen, M. Knobelsdorf, and
R. Romeike, editors, Proceedings of the 8th Workshop
in Primary and Secondary Computing Education,
pages 47–50, November 2013.

[4] P. Curzon, M. Dorling, T. Ng, C. Selby, and
J. Woollard. Developing computational thinking in the
classroom: a framework. Computing at School,
Available from
community.computingatschool.org.uk/resources/2324,
June 2014.

[5] P. Curzon and P. W. McOwan. Engaging with
computer science through magic shows. In Proceedings
of ITiCSE 2008, The 13th Annual Conference on
Innovation and Technology in Computer Science
Education ACM SIGCSE, pages 179–183. ACM, June
2008. Madrid, Spain.

[6] Q. I. Cutts, M. I. Brown, L. Kemp, and C. Matheson.
Enthusing and informing potential computer science
students and their teachers. ACM SIGCSE Bulletin,
39(3), 2007.

[7] S. Dehnadi and R. Bornat. The camel has two humps,
February 2006.

[8] M. Dorling and M. Walker. Computing Progression
Pathways V2.0. Computing at School, Available from
community.computingatschool.org.uk/resources/2324,
June 2014.

[9] S. Papert. An exploration in the space of mathematics
educations. International Journal of Computers for
Mathematical Learning, 1(1):95–123, 1996.

[10] J. M. Wing. Computational thinking.
Communications of the ACM, 49:33–35, 2006.

WiPSCE 2014 Research Papers

92

	Introduction
	The Workshops
	Workshop 1: Computational Thinking
	Workshop 2: Algorithmic Thinking
	Workshop 3: Unplugged Programming
	Workshop 4: The Human Side

	Evaluation
	Conclusions
	Acknowledgments
	References

